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Random Variable

* Arandom variable is a mathematical formulation of a quantity that
depends on random events.

* We use upper case letters to represent random variables (e.g., X) and
lower-case to represent constants (e.g., x).

* We can talk about the probability of a random variable X taking a value
x:Pr(X = x).
* Example:
* If X is aroll of a fair die, then Pr(X = 3) = 1/6.

* Afull characterization of random variables is beyond the scope of this
course, and can be a surprisingly deep topic (see “measure theoretic
probability”).



Probability Distribution

* A probability distribution (probability measure) gives the
probability that a random variable takes different values.

* Technically it gives the probability of events (not necessarily values or
outcomes), but a formal characterization of “events” is beyond the scope

of this class.
e \We can talk about the “distribution of a random variable.”

* Example:
* Let p be the distribution of a fair die.

1
» p(1) = p(2) = p(3) = p(4) = p(5) = p(6) ==
* For all such discrete distributions: Vx, p(x) = 0 and )., p(x) = 1.



Probability Distribution (continued)

* We often say that we have multiple random variables “sampled
from the same distribution”.

* Here “sampled” is slightly imprecise.

* We really mean that we have multiple random variables, they all
have the same distribution, and they are all statistically

iIndependent.
* i.i.d.: Independent and identically distributed.

* Example:
* Let X; and X, be two random variables, each representing a sample of a
fair die.
* |f the two die rolls are independent, what is Pr(X; + X, = 7)?



Realization or Instance of a Random Variable

* Once arandom variable has been sampled, it takes a specific
value.

* This is called a realization or instance of the random variable.
 Arealization of a random variable is a constant.
* Let x; and x, denote the realization of two fair die rolls.

* Whatis Pr(x; = x,)?
* Trick question! There is nothing random here. They are either equal or not,
and so this probability is either 0 or 1.
* Think of x; and x, as symbols in place of specific numbers.

 Whatis Pr(3 = 3)? Whatis Pr(1 = 2)?



Random Data Sets

* In ML, we typically think of data sets as being random samples
from some distribution, called the data generating distribution.

* Example: The GPA data set contains samples from the distribution of
students applying to UFRGS.
* We may write (X, Y) to denote a random variable representing one
sample from this distribution.

* A data set contains many of these random variables: (X;, ;)i ;.

* This data set is itself a random quantity!

* We can reason about things like Pr(X; = X,), Pr(Y; = Y,|X; # X,), or
even the probability of the MSE of the model learned by NN being below a

constant value!



Random Data Sets: Example

* Consider a data set containing n = 2 rolls of a fair die.

* X1 and X, are random variables representing independent rolls of
the die:
Pr(X; = 1) = Pr(X; = 2) = Pr(X; = 3) = Pr(¥, = 4) = Pr(X, = 5) = Pr(X; = 6) = ¢
* The data setis (X1, X,).
¢ What iS PI‘(X1 — Xz)?



Non-Random Data Sets

* The data set that we see is one sample of the random variables.

* Once we have the data set as a computer file, it is no longer
random, and so we write: (x;, ¥;)i=1-

* In the die example, the data setis (xq, x,).
* Here x4 and x, are symbols representing numbers (not random!).

* Whatis Pr(x; = x,)?
* It’s either zero or one! Either they are equal or not. There is nothing random about
x1 — x2!



Random vs Non-Random

* Note: Different ML texts take different random/not-random
perspectives for data sets!

* Texts emphasizing principled theory typically take the random
perspective.

* Texts emphasizing basic practice typically take the non-random
perspective.

* When writing pseudocode for an algorithm, should we view the
data as random or non-random?

* No agreed-upon convention!



Random vs Non-Random Terminology

* The terms random and non-random are imprecise.
* People often use random to mean “uniform random.”

* |ts precise meaningis “is a random variable.”
* Arandom variable can always take the same value, effectively being constant!

 Random - Stochastic (avoids confusion with “uniform random”)
 Non-Random = Deterministic or constant (cannot be “random”).
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Probability and Statistics Terminology

* Parameter / Population Statistic: A parameter is a property of a
probability distribution (or random variable), like the mean or
variance.

* Example: Mean E| X]

* Sample: One or more “draws” of a random variable.

* X1,X5, ..., X, might be random variables representing n samples.

* Example: These represent n rolls of the same die

* Often samples X{, X, ..., X,, are independent and identically distributed (i.i.d.).
* X1,X>5, ..., Xn Might be the realization of n samples.

* Example: The actual outcomes of n rolls of a die.

* Itis not meaningful to discuss whether x4, x5, ..., x,, are i.i.d.
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Probability and Statistics Terminology

* Statistic / Sample Statistic: Statistics are properties of a sample.
To emphasize this, we sometimes say “sample statistic.”

* Example: Sample mean %Z?lei
* Notice that the sample mean is itself a random variable!

. N 1
* We can also consider a realization of the sample mean: ;Z?ﬂ X .
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Mean Squared Error (revisited)

* The MSE is: ,
MSE = E|(¥ - 7)°].
* Thisis a parameter or population statistic.

* The sample MSE is:

n

n

_ 1 N2 1

MSE, =) (%=1)" or = (i —y)?.
=1

=1
* This is a statistic or sample statistic.

* The “hat” means “an estimate” and the n-subscript indicates it is computed
from n samples.

* Our goalis typically to optimize a parameter.
 We don’t know this parameter’s value.

* [n an attempt to achieve this goal, we use sample statistics.
* We can compute sample statistics from data!
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Can we trust sample statistics?

* How much we should trust sample statistics depends on:

* The number of samples, n.

* Ifthe average of 3 die rollsis 4, and the average of 3,000 die rolls is 3.47, which do
you trust more?

* The variance of the samples.
 Considerthe samples (-1, -0.3, 0, 0.5, 0.8) versus (-820, -214, 12, 480, 542)

* Both have sample mean 0. Which are you more confident has a mean in the range
[—10,10]?

* |dea: Use the number of samples and variance of samples to
estimate how accurate the sample statistic is.
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Confidence Interval

* We will use the number of samples and their variance to construct a
confidence interval for the parameter (e.g., MSE) based on the sample
statistic (sample MSE).

* A confidence interval is an interval (range of numbers) that contains a
parameter with a specified confidence, 1 — 6.

* If[L,U]isal — 6 confidence interval for the mean u, then
Pr(L<u<U)>=1-6.

* Question: What is random in this statement of probability?

* Answer: The confidence intervalis random! It is typically computed
from data. Different samples of data result in different lower and upper
bounds.
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Standard Error

* One common way to obtain a confidence interval is using standard error.
* Let x¢, x5, ..., X, be a sequence of n numbers.

* Let 0 be the sample standard deviation of this sequence (with Bessel’s
correction):

o = )
n—1

n

=

P

=

1
n

[y

e The standard error is then

SE = —
==



Using Standard Error

* If X4, X5, ..., X,; are nrandom variables and:
* The random variables are i.i.d. with mean u.
* The random variables are each normally distributed.

« X =% * X, isthe sample mean.
e Then[X — 1.96 x SE, X + 1.96 x SE] is a 95% confidence interval for u.

* Thatis: _ _
Pr(X —1.96 X SE<u <X+ 196 x SE) = 0.95.

* Note: There exist other confidence intervals for the mean that don’t assume
that data is normal (e.g., Maurer & Pontil), and even confidence intervals that
don’t assume independence (e.g., Azuma) or identically distributed samples
(e.g., Hoeffding)!

* |In general, all confidence intervals make some assumptions, but the assumptions differ.
* Confidence intervals with weaker assumptions tend to be “loose” (have wide intervals).
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“The random variables are each normally
distributed”

* Actually, we only require the sample mean to be normally
distributed.

* Question: Why is it reasonable to assume the sample mean is
normally distributed?

* Answer: Central Limit Theorem
* Asn — oo, the sample mean becomes normally distributed regardless of
the sampling distribution.
* S0, whennis “big enough”, this assumption is “reasonable” (still false
though...)

* What value of n is “big enough” depends on the problem.

* |I’ve seen examples where 20 is enough and where hundreds of thousands are not

enough.
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Mean Squared Error (re-revisited)

+ MSE: MSE = E|(¥ — 7;)°].
« Sample MSE: MSE,, = = Y7, (V; — 171)2 .

n
cLetZ; = (Y, - 7;)°.
* Notice that u = E|[Z;] = MSE, and let SE be the standard error of
21,2y e L.
* So, MSE,, + 1.96 X SE is a 95% confidence interval for the actual

MSE (under normality assumptions).

* Although normality assumptions often false, this gives a rough idea of
how much the sample MSE can be trusted.
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Serating

Thank you.

Degginmenic
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