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Random Variable

• A random variable is a mathematical formulation of a quantity that 
depends on random events.

• We use upper case letters to represent random variables (e.g., 𝑋) and 
lower-case to represent constants (e.g., 𝑥). 

• We can talk about the probability of a random variable 𝑋 taking a value 
𝑥: Pr 𝑋 = 𝑥 .

• Example:
• If 𝑋 is a roll of a fair die, then Pr 𝑋 = 3 = 1/6.

• A full characterization of random variables is beyond the scope of this 
course, and can be a surprisingly deep topic (see “measure theoretic 
probability”).
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Probability Distribution

• A probability distribution (probability measure) gives the 
probability that a random variable takes different values. 
• Technically it gives the probability of events (not necessarily values or 

outcomes), but a formal characterization of “events” is beyond the scope 
of this class.

• We can talk about the “distribution of a random variable.”
• Example:

• Let 𝑝 be the distribution of a fair die.

• 𝑝 1 = 𝑝 2 = 𝑝 3 = 𝑝 4 = 𝑝 5 = 𝑝 6 =
1

6

• For all such discrete distributions: ∀𝑥, 𝑝 𝑥 ≥ 0 and σ𝑥 𝑝 𝑥 = 1. 
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Probability Distribution (continued)

• We often say that we have multiple random variables “sampled 
from the same distribution”.

• Here “sampled” is slightly imprecise.
• We really mean that we have multiple random variables, they all 

have the same distribution, and they are all statistically 
independent.
• i.i.d.: Independent and identically distributed.

• Example:
• Let 𝑋1 and 𝑋2 be two random variables, each representing a sample of a 

fair die.
• If the two die rolls are independent, what is Pr 𝑋1 + 𝑋2 = 7 ?
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Realization or Instance of a Random Variable

• Once a random variable has been sampled, it takes a specific 
value.

• This is called a realization or instance of the random variable.
• A realization of a random variable is a constant.
• Let 𝑥1 and 𝑥2 denote the realization of two fair die rolls.
• What is Pr 𝑥1 = 𝑥2 ?

• Trick question! There is nothing random here. They are either equal or not, 
and so this probability is either 0 or 1.

• Think of 𝑥1 and 𝑥2 as symbols in place of specific numbers.
• What is Pr 3 = 3 ? What is Pr 1 = 2 ?
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Random Data Sets

• In ML, we typically think of data sets as being random samples 
from some distribution, called the data generating distribution.
• Example: The GPA data set contains samples from the distribution of 

students applying to UFRGS.

• We may write (𝑋, 𝑌) to denote a random variable representing one 
sample from this distribution.

• A data set contains many of these random variables: 𝑋𝑖 , 𝑌𝑖 𝑖=1
𝑛 .

• This data set is itself a random quantity!
• We can reason about things like Pr 𝑋1 = 𝑋2 , Pr 𝑌1 = 𝑌2 𝑋1 ≠ 𝑋2 , or 

even the probability of the MSE of the model learned by NN being below a 
constant value!
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Random Data Sets: Example

• Consider a data set containing 𝑛 = 2 rolls of a fair die.
• 𝑋1 and 𝑋2 are random variables representing independent rolls of 

the die:
Pr 𝑋1 = 1 = Pr 𝑋1 = 2 = Pr 𝑋1 = 3 = Pr 𝑋1 = 4 = Pr 𝑋1 = 5 = Pr 𝑋1 = 6 =

1
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• The data set is 𝑋1, 𝑋2 .

• What is Pr 𝑋1 = 𝑋2 ?
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Non-Random Data Sets
• The data set that we see is one sample of the random variables.
• Once we have the data set as a computer file, it is no longer 

random, and so we write: 𝑥𝑖 , 𝑦𝑖 𝑖=1
𝑛 .

• In the die example, the data set is (𝑥1, 𝑥2).
• Here 𝑥1 and 𝑥2 are symbols representing numbers (not random!).
• What is Pr 𝑥1 = 𝑥2 ?

• It’s either zero or one! Either they are equal or not. There is nothing random about 
𝑥1 = 𝑥2!
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Random vs Non-Random

• Note: Different ML texts take different random/not-random 
perspectives for data sets!
• Texts emphasizing principled theory typically take the random 

perspective.
• Texts emphasizing basic practice typically take the non-random 

perspective.

• When writing pseudocode for an algorithm, should we view the 
data as random or non-random?
• No agreed-upon convention! 
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Random vs Non-Random Terminology

• The terms random and non-random are imprecise.
• People often use random to mean “uniform random.”
• Its precise meaning is “is a random variable.”

• A random variable can always take the same value, effectively being constant!

• Random → Stochastic (avoids confusion with “uniform random”)
• Non-Random → Deterministic or constant (cannot be “random”).
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Probability and Statistics Terminology
• Parameter / Population Statistic: A parameter is a property of a 

probability distribution (or random variable), like the mean or 
variance.
• Example: Mean 𝐄 𝑋

• Sample: One or more “draws” of a random variable. 
• 𝑋1, 𝑋2, … , 𝑋𝑛 might be random variables representing 𝑛 samples.

• Example: These represent 𝑛 rolls of the same die
• Often samples 𝑋1, 𝑋2, … , 𝑋𝑛  are independent and identically distributed (i.i.d.).

• 𝑥1, 𝑥2, … , 𝑥𝑛 might be the realization of 𝑛 samples.
• Example: The actual outcomes of 𝑛 rolls of a die.
• It is not meaningful to discuss whether 𝑥1, 𝑥2, … , 𝑥𝑛 are i.i.d.
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Probability and Statistics Terminology

• Statistic / Sample Statistic: Statistics are properties of a sample. 
To emphasize this, we sometimes say “sample statistic.”
• Example: Sample mean 1

𝑛
σ𝑖=1

𝑛 𝑋𝑖

• Notice that the sample mean is itself a random variable!

• We can also consider a realization of the sample mean: 1
𝑛

σ𝑖=1
𝑛 𝑥𝑖.
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Mean Squared Error (revisited)

• The MSE is:
MSE = 𝐄 𝑌 − ෠𝑌

2
.

• This is a parameter or population statistic.
• The sample MSE is:

෣MSE𝑛 =
1

𝑛
෍

𝑖=1

𝑛

𝑌𝑖 − ෠𝑌𝑖
2

 or 
1

𝑛
෍

𝑖=1

𝑛

𝑦𝑖 − 𝑦𝑖
2 .

• This is a statistic or sample statistic.
• The “hat” means “an estimate” and the 𝑛-subscript indicates it is computed 

from 𝑛 samples.
• Our goal is typically to optimize a parameter.

• We don’t know this parameter’s value.
• In an attempt to achieve this goal, we use sample statistics.

• We can compute sample statistics from data! 13



Can we trust sample statistics?

• How much we should trust sample statistics depends on:
• The number of samples, 𝑛.

• If the average of 3 die rolls is 4, and the average of 3,000 die rolls is 3.47, which do 
you trust more?

• The variance of the samples.
• Consider the samples (-1, -0.3, 0, 0.5, 0.8) versus (-820, -214, 12, 480, 542)
• Both have sample mean 0. Which are you more confident has a mean in the range 

−10,10 ?

• Idea: Use the number of samples and variance of samples to 
estimate how accurate the sample statistic is.

14



Confidence Interval

• We will use the number of samples and their variance to construct a 
confidence interval for the parameter (e.g., MSE) based on the sample 
statistic (sample MSE).

• A confidence interval is an interval (range of numbers) that contains a 
parameter with a specified confidence, 1 − 𝛿.

• If [𝐿, 𝑈] is a 1 − 𝛿 confidence interval for the mean 𝜇, then
Pr 𝐿 ≤ 𝜇 ≤ 𝑈 ≥ 1 − 𝛿.

• Question: What is random in this statement of probability?
• Answer: The confidence interval is random! It is typically computed 

from data. Different samples of data result in different lower and upper 
bounds.
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Standard Error

• One common way to obtain a confidence interval is using standard error.
• Let 𝑥1, 𝑥2, … , 𝑥𝑛 be a sequence of 𝑛 numbers.
• Let 𝜎 be the sample standard deviation of this sequence (with Bessel’s 

correction):

𝜎 =
σ𝑖=1

𝑛 𝑥𝑖 − ҧ𝑥 2

𝑛 − 1
,

ҧ𝑥 =
1

𝑛
෍

𝑖=1

𝑛

 𝑥𝑖

• The standard error is then
SE =

𝜎

𝑛
.
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Using Standard Error

• If 𝑋1, 𝑋2, … , 𝑋𝑛 are 𝑛 random variables and:
• The random variables are i.i.d. with mean 𝜇.
• The random variables are each normally distributed.
• ത𝑋 =

1

𝑛
σ𝑖=1

𝑛 𝑋𝑖  is the sample mean.

• Then ത𝑋 − 1.96 × SE, ത𝑋 + 1.96 × SE  is a 95% confidence interval for 𝜇. 
• That is:

Pr ത𝑋 − 1.96 × SE ≤ 𝜇 ≤ ത𝑋 + 1.96 × SE ≥ 0.95.

• Note: There exist other confidence intervals for the mean that don’t assume 
that data is normal (e.g., Maurer & Pontil), and even confidence intervals that 
don’t assume independence (e.g., Azuma) or identically distributed samples 
(e.g., Hoeffding)!
• In general, all confidence intervals make some assumptions, but the assumptions differ.
• Confidence intervals with weaker assumptions tend to be “loose” (have wide intervals).
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“The random variables are each normally 
distributed”
• Actually, we only require the sample mean to be normally 

distributed.
• Question: Why is it reasonable to assume the sample mean is 

normally distributed?
• Answer: Central Limit Theorem

• As 𝑛 → ∞, the sample mean becomes normally distributed regardless of 
the sampling distribution.

• So, when 𝑛 is “big enough”, this assumption is “reasonable” (still false 
though…)

• What value of 𝑛 is “big enough” depends on the problem.
• I’ve seen examples where 20 is enough and where hundreds of thousands are not 

enough.
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Mean Squared Error (re-revisited)

• MSE: MSE = 𝐄 𝑌 − ෠𝑌𝑖
2

.

• Sample MSE: ෣MSE𝑛 =
1

𝑛
σ𝑖=1

𝑛 𝑌𝑖 − ෠𝑌𝑖
2

.

• Let 𝑍𝑖 = 𝑌𝑖 − ෠𝑌𝑖
2

.
• Notice that 𝜇 = 𝐄 𝑍𝑖 = MSE, and let SE be the standard error of 

𝑍1, 𝑍2, … , 𝑍𝑛.
• So, ෣MSE𝑛 ± 1.96 × SE is a 95% confidence interval for the actual 

MSE (under normality assumptions).
• Although normality assumptions often false, this gives a rough idea of 

how much the sample MSE can be trusted.
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End

20


	Slide 1: COMPSCI 389 Introduction to Machine Learning
	Slide 2: Random Variable
	Slide 3: Probability Distribution
	Slide 4: Probability Distribution (continued)
	Slide 5: Realization or Instance of a Random Variable
	Slide 6: Random Data Sets
	Slide 7: Random Data Sets: Example
	Slide 8: Non-Random Data Sets
	Slide 9: Random vs Non-Random
	Slide 10: Random vs Non-Random Terminology
	Slide 11: Probability and Statistics Terminology
	Slide 12: Probability and Statistics Terminology
	Slide 13: Mean Squared Error (revisited)
	Slide 14: Can we trust sample statistics?
	Slide 15: Confidence Interval
	Slide 16: Standard Error
	Slide 17: Using Standard Error
	Slide 18: “The random variables are each normally distributed”
	Slide 19: Mean Squared Error (re-revisited)
	Slide 20: End

